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ELMs Represent Major Challenge to Successful Tokamak Reactor

 Edge Localized Modes (ELMs)
— Intermittent bursts of heat from plasma edge
— Present in most H-mode scenarios

— Understood to be ideal-MHD instabilities of the plasma
edge (peeling-ballooning modes)

— Expected to melt / erode divertor in ITER if not
mitigated

 “ITER and later reactors will require very large
reductions in the magnitude and frequency of both
ELMs and major disruptions based on
extrapolations from current experiments”
— http://science.energy.gov/~/media/fes/pdf/program-
news/Transients_Report.pdf
%, 1/23/19 NM Ferraro - PPPL/UMD Stellarator Mini-Conference 2

_—




O

RMPs are a Primary Strategy for ELM Mitigation
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ELMs can be completely suppressed by applying non- -
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EPED Model Suggests Suppression Is
Due to Enhanced Transport at Pedestal Top

>

EPED Model of pedestal structure:
— Gradient determined by local KBM stability

— Width grows until global P-B stability threshold is
reached (ELM)

pressure
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EPED Model Suggests Suppression Is

Due to Enhanced Transport at Pedestal Top

 EPED Model of pedestal structure:
— Gradient determined by local KBM stability

— Width grows until global P-B stability threshold is
reached (ELM)

pressure
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width maximum
grows gradient
Is unchanged
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EPED Model Suggests Suppression Is

Due to Enhanced Transport at Pedestal Top

 EPED Model of pedestal structure:
— Gradient determined by local KBM stability

— Width grows until global P-B stability threshold is
reached (ELM)

Unstable!

pressure

width maximum
grows gradient
Is unchanged
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EPED Model Suggests Suppression Is

Due to Enhanced Transport at Pedestal Top

EPED Model of pedestal structure:
— Gradient determined by local KBM stability
— Width grows until global P-B stability threshold is

reached (ELM)

pressure

Implies model of ELM suppression:
— Something stops widening of pedestal before

threshold

— Requires enhanced transport at ¥ = 96-97%
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EPED Model Suggests Suppression Is
Due to Enhanced Transport at Pedestal Top

®)

EPED Model of pedestal structure:
— Gradient determined by local KBM stability

— Width grows until global P-B stability threshold is
reached (ELM)

Stable!

pressure

Implies model of ELM suppression:

— Something stops widening of pedestal before
threshold

— Requires enhanced transport at ¥ = 96-97%

Predictive modeling needs model of RMP effect on transport
— Enhanced neoclassical transport?
— Turbulent transport (KBM)?
— Magnetic islands / stochasticity = parallel transport?
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Significant Enhancement of Tearing Response

Calculated in ELM-Suppressed State

* Measurements show change of rotation
and pressure profiles in ELM-suppressed
state

— c.f. Nazikian, et al. PRL 114, 105002 (2015)
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* Modeling shows enhanced tearing near
pedestal top in ELM-suppressed state
— w,= 0 moves outward

— M3D-C1 shows enhanced tearing response
where w, is small
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e Still, implied islands would be small; is
this enough to stop pedestal growth?

— Need to quantify this!

Total Resonant Field (G/kA)
o
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New Project Will Combine 3D Tokamak Equilibrium &

Transport Calculations to Understand ELM Suppression

* 3D equilibria can be calculated with M3D-C1
— Plasma response strongly affects magnetic geometry
— Allows islands, stochasticity
— Two-fluid effects are important in edge due to strong diamagnetic flows

* Effect on various types of transport can then be calculated

— Interfaces have already been developed between M3D-C1 and XGC, GTC,
SPIRAL, TRIP3D, EMC3-EIRENE, and 3D NEO

* Goalis to analyze broad set of data

— Lots of noise introduced by individual EFIT reconstructions; need
statistics

— DIlI-D, NSTX(-U), MAST(-U), KSTAR, AUG(?), EAST(?)
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* ITER is counting on RMP ELM suppression — but we don’t know under
what conditions it will work

* Pedestal models suggest ELM suppression might be due to enhanced
transport at top of pedestal

 New project is underway to evaluate various transport channels given
high-fidelity 3D tokamak equilibrium calculations

— Lots of crosscutting issues with stellarators here!

* Ultimately, we seek a validated, predictive model of RMP ELM
suppression to gain confidence that it will work in reactor-relevant
scenarios
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M3D-C1 Is Parallel, Finite-Element Code Using Unstructured,

Multi-Region Mesh
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*  Triangular C1 finite elements on unstructured mesh 2
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* 3regionsinside domain:
— XMHD (Extended MHD)
— RW (E =#yd)
—  Vacuum (J =0)
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*  Boundary conditions:
— Vv, p,nsetatinner wall
— B set at outer (superconducting) wall
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*  There are no boundary conditions on B or J at the resistive wall 05 10 15 20 2b 30
— Current can flow into and through the resistive wall

Superconducting
Wall
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Two-Fluid Extended MHD Model
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* (R, ¢, Z) coordinates = no coordinate singularities in plasma

* Boundary conditions:
— Linear, time-independent (plasma response) — single n
— Linear, time-dependent (linear stability) — single n

— Nonlinear, time-dependent (nonlinear evolution) — toroidal finite elements
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Linear MHD Modeling Shows “Kinking,” “Screening,” and

“Tearing” in Response

T RS Avledried
* Kinking: amplification of non-resonant field 18f —m= -9 Lk
components s =7 O\
— Makes distortion of surfaces larger than implied by 47
applied fields os
« Screening: reduction of resonant field “os0  oss 0% oo 100
components = ¥
— Makes islands smaller than implied by applied

fields

e Tearing: when plasma response fails to screen
resonant components

— Only possible in non-ideal response
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Experiments Clearly See “Kink” Response

* Including plasma response is necessary to accurately
model edge measurements
— T, n, profiles in edge strongly affected by “kink” response

— Linear modeling is successful in reproducing measured profiles;
magnetics data
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Experiments See Hints of Island Formation

158115

* Measuring small islands (~1 cm) is very L 20
difficult experimentally " oo 15
q=4 o
0.92 103
* In transition into ELM-suppressed state, S
a bifurcation similar to the formation of a 0.88
locked island is observed ST loo
— Temperature flattening near top of Time (ms) .
pedestal 3 2
. . . = 0
— Non-rotating magnetic signal e 20
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* Noisland is seen directly. Modeling is 5 0 &
still needed to understand results 0 Al AN
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— Truly predicting island formation requires Time (ms) Time (ms)
nonlinear mOdelmg Nazikian, et al. PRL 114, 105002 (2015)
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